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Abstract

We partner with Ecuador’s government to implement a centralized school choice system
using a Deferred Acceptance algorithm in Manta. Our study evaluates the welfare impact
of transitioning from a distance-based assignment system to one that incorporates families’
preferences. Results show that accounting for preferences yields substantial welfare gains.
Counterfactual analyses suggest that alternative mechanisms offer limited improvements
compared to the benefits of preference inclusion and coordinated assignments. Household
survey data on beliefs and satisfaction support these findings, indicating that centralized
school choice systems can deliver significant welfare effects in developing countries.
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1 Introduction

This paper examines the welfare effects of a policy change in Manta, Ecuador’s coordinated
school assignment system, which previously aimed to minimize travel distance. The system
faced challenges due to the need for accurate georeferencing and adjustments for geographic
barriers like hills and rivers. To address these issues, the Ecuadorian Ministry of Education,
in partnership with the IADB and ConsiliumBots, piloted a new system driven by applicants’
preferences. The new policy adopted best practices, including the deferred acceptance algo-
rithm, unlimited ranked lists, and improved information systems (Abdulkadiroglu & Sénmez,
2003; Pathak, 2011, 2017; Abdulkadiroglu et al., 2017; Arteaga et al., 2021).

To compare the assignment alternatives, we take advantage of the fact that the system im-
plemented in Manta elicited the true preferences and locations of all participating applicants.
This allows us to compare the assignments made by the new centralized choice and assign-
ment system (CCAS) with the simulated assignments of the prior alternative. Our methodol-
ogy consists of using a counterfactual strategy, replicating the rules of the previous process,
and simulating assignments with different lotteries following Abdulkadiroglu et al. (2017).

Our key finding is that implementing a coordinated mechanism that accounts for appli-
cants’ preferences provides significant welfare benefits. Using the deferred acceptance (DA)
algorithm increased the percentage of applicants assigned to one of their chosen schools from
49.96% to 78.44%, and first-choice assignments rose from 42.42% to 69.76%. However, this
comes with an average increase in distance to school by 0.29 km, with Preschool 1 and 2 appli-
cants seeing increases of 0.683 km and 0.354 km, respectively, while Primary 1 applicants saw
a smaller increase of 0.012 km due to greater congestion. For those whose assignments differ
between the distance and DA mechanisms, these distance increases are larger.

We focus our analysis on estimated welfare and on the share of applicants being assigned
to more or less preferred alternatives based on their reported preferences as detailed below.
School quality is not considered because: i) we do not aim to study whether families in Ecuador
prefer higher-quality schools, but rather to assess the welfare consequences of the assignment
system as it relates to applicants” valuation of different schools, and ii) we cannot (at least
directly) observe school quality.1

These results enhance the understanding of the benefits of coordinated school choice and
assignment systems. While several studies highlight the welfare advantages of different mech-
anisms, few have directly estimated the benefits of coordinated systems that incorporate house-
hold preferences. The most closely related study is Abdulkadiroglu et al. (2017), which ex-
amines the welfare effects of shifting New York City’s uncoordinated assignment system to
a coordinated one that factors in family preferences. The authors find that most welfare gains
come from coordination using the deferred acceptance algorithm, with only marginal improve-
ments from alternatives. Similarly, in Ecuador, we find that the DA algorithm outperforms a
coordinated system based on minimizing distance.

IThe Ecuadorian government does not currently apply census-based student learning assessments in primary
grades. We also do not study the impact of the system on other measures of interest, such as educational segregation,
as we lack socioeconomic data for participating applicants.



2 Context and Algorithm Descriptions

We study school assignment in the coastal region of Manta, Ecuador. Specifically, we concen-
trate on the urban areas within and around the city of Manta, including the geographic units
(“cantones”) of Manta, Montecristi, and Jaramijo.

Manta was selected as the result of a process that aimed to find a small but representative
city to scale up the school assignment policy.> The selection process took into account students
in the urban area, school coverage, distribution of school types (mainly public and private),
as well as city size. Ultimately, Manta was chosen for its relative similarity to the alternatives.
Table 4 of Appendix B compares the main characteristics of Manta and Guayaquil, another
coastal city and the country’s largest, using data from the 2010 Census and school transfer
requests in the 2019-2020 school year.

The Ecuadorian educational system is organized into three levels: Preschool (Educacién Ini-
cial), Primary School (Educaciéon General Bdsica) and Secondary School (Bachillerato). In this
paper, we focus on school assignments at the “entry level”, a designation that encompasses
enrollment in Preschool 1, Preschool 2, and Primary 1.

Ecuador has three types of schools: public (fiscal and municipal), fiscomisional (partially
state-funded), and private (fully family-funded). Nationwide, public schools account for 73.8%
of enrollments, with fiscomisional at 6% and private schools at 20%. In Manta, public schools
represent 66% of entry-level enrollments, while fiscomisional and private schools account for 4%
and 30%, respectively.

This pilot focused on free public schools, so private schools were an outside option not
included in our model, potentially leading to overestimated welfare comparisons. However,
a survey conducted after the application period showed limited overlap between public and
private schools.® Only 1% of respondents cited private schools as a reason for not listing more
alternatives, despite many applicants submitting just one or two preferences.* This suggests
that private school options were not a major factor for most families.

2.1 Distance-Centric Algorithm

Before the COVID-19 pandemic, the school assignment system in Ecuador was based mainly on
the applicant’s location, reported through the code on the family’s electricity account (CUEN).
In addition to the linear distance criterion, a prioritization criterion was also used to determine
the order in which applicants were processed (being processed first was preferable). This pri-
oritization criterion was randomly assigned to students applying to be enrolled in the system.

2There was a change in government in Ecuador in 2021, and the new administration recently decided to scale
up the system in coastal districts beginning in 2023. Because of the COVID pandemic and the fact that the distance-
centric alternative required several in-person interactions during the process, the Ministry is currently using a First-
Come, First-Serve digital system.

3The objectives of this survey were to gather information about parents’ overall satisfaction with the system,
the information sources they used to apply for schools, awareness of the school supply, among other aspects. The
survey was completed by 1,484 parents.

4All applicants were ultimately assigned, though some were placed in a school outside their reported prefer-
ences. In these cases, the assigned school was the closest possible alternative, as explained in subsection 2.1.
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The assignment system was part of a broader six-phase enrollment process, detailed in
Appendix C. The Assignment Phase, the third of these phases, was conducted in stages. In the
first stage, applicants were categorized based on their preference for regular, rural, bilingual,
or special education programs. Where applicable, applicants with siblings already enrolled
were assigned to the same school. Students applying for non-regular programs and those with
siblings in the system were prioritized and processed before other applicants.

Once these groups were assigned via a process that was carried out directly at the district
headquarters, the rest of the students were assigned using the distance-centric (DC) algorithm,
which the Ministry called the “mathematical model.” Legal guardians could complete an in-
dividual registration (of a single applicant) or one for a “group of siblings.” While this latter
option suggests that the system prioritized assigning groups of siblings to the same school over
distance-based considerations, this was not confirmed by the Ministry experts with whom we
interacted.

The processing of regular assignments was carried out as follows:

¢ At each level, random numbers were given to all applicants. These random numbers
correspond to the prioritization criteria mentioned above and determined the processing
order.

¢ Following this order, applicants were assigned to the closest school (linear distance) with
vacancies, in an iterative process that used increasing distance radii from the applicant’s
home.®

This procedure can be conceptualized as an application of the “serial dictatorship” mech-
anism, in the sense that applicants select schools one after the other. Given that the order
of choice has a random component, such assighment models have been termed "random serial
dictatorships" (Abdulkadiroglu & Sonmez, 1998). The enrollment of groups of siblings can thus
be considered a priority, since the system will try to assign these groups to the same schools
over other individual applications.

As explained above, an applicant’s home address was based on the legal guardians’ elec-
tricity bill. Using the latter to identify family location has proven highly effective, but may also
incentivize families to procure (and even buy) electricity bills closer to their schools of interest.
Moreover, there are still areas where households do not have electricity meters. These facts
were reported in a series of interviews carried out by the IADB in Quito and Guayaquil, where
families and officials recounted different factors affecting the registration processes.® Given
that we do not have precise estimates of location misreporting rates, we conduct a sensitivity
analysis in Section 4 and simulate assignments under different levels of misreporting.

The Ecuadorian government’s concern with minimizing the distance to school arises from
public policy considerations, and not because this aspect affects other dimensions such as, for

5The schools available were evaluated at radii of 100m, 200m, 300m, and 500m, and then at increments of 250m
up to 3.5 kilometers.

For example, district officials commented: (1) “In District 24, Durdn, Guayaquil, families lend their electricity bills
to each other so they can all have access to the education system. We estimate that more than 60% of families in this district
do not use their own electricity bill, so they do not register their real geolocation.” (2) “In District 8, Monte Sinaf, Guayaquil,
families maintain that there are “illegal invasions” of other families in areas where popular schools are located, using electricity
bills from that area to get a seat in these schools.”
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example, public expenditure on free busing to schools. The latter consideration is nevertheless
relevant in other contexts (e.g., many US cities), meaning that analyses comparing assignment
mechanisms in similar cases should consider inclusion of these budget factors.

2.2 Deferred Acceptance (DA) Mechanism

The pilot used the deferred acceptance mechanism (Gale & Shapley, 1962), following the best
practices in school choice mechanism design (Pathak, 2011; Correa et al., 2019). The specifica-
tion of the assignment algorithm included static and dynamic sibling priorities, family linking,
and a multiple tie-breaking rule.”

The static and dynamic sibling priorities indicate that an applicant will be prioritized for
assignment to a school/program if their sibling is already assigned to the school (static). If the
applicant is applying at the same time with another sibling, and one of them is assigned to a
school,® the applicant that has not been assigned yet will receive priority for being assigned
to that same school (dynamic). The dynamic sibling priority is lower than the static sibling
priority because the latter is already defined (the sibling is attending the school), while the
former will depend on the answer from the applicant after the assignment.

The family linking feature consists of trying to assign all siblings applying together to the
same schools. Following a descending order, where older applicants are assigned first, if an
older sibling is assigned to school A, the applications of the younger siblings will be modified
to put school A as the first-ranked school to improve the probability of being assigned together.
Finally, a multiple tie-breaking rule gives each applicant a different lottery number for each
school to which they apply. Lottery numbers are used to break ties within priority groups
when a school receives more applications than spaces available.

3 Data

The data used in this paper come from the centralized choice and assignment system (CCAS)
pilot web page created in 2021 in the region of Manta, Ecuador.” The first data set comprises
the supply of vacancies for all schools and programs offered in the pilot, where an educational
program consists of a combination of grade and school. The pilot was implemented for all
students entering Preschool 1, Preschool 2, and the first year of primary school (i.e., ages 3 to
5) for the first time. Vacancies are presented in Panel A of Table 1.

Preschool 1 has the most vacancies and is the least congested grade, while Primary 1 is the

"The deferred acceptance algorithm was chosen for its non-strategic and stable nature, and its ability to support
dynamic sibling priority, family-linked applications, and varied priority-quota combinations. While more efficient
alternatives like SIC and TTC exist, they sacrifice strategy-proofness and stability, respectively. However, as dis-
cussed in Section 4 and by Abdulkadiroglu et al. (2017), the efficiency improvements from these alternatives are
marginal compared to transitioning from an uncoordinated or non-CCAS system, as is relevant here.

8This can happen if one sibling is older than the other and will depend on the order in which the algorithm is
run. If it is descending, the older sibling will give dynamic priority to the younger sibling. If it is ascending, it will
be the other way around.

9 All PII data was eliminated for that purpose.



most congested. 1

The second data set contains information about students and their legal guardians, includ-
ing geolocation, sibling relationships, special educational needs, and nationality.!! Each appli-
cant’s rank-ordered list (ROL) of preferences had no length limit, and lotteries were conducted
for each program. As noted, applications were supplemented by adding all other alternatives,
sorted by distance, to the initial preference list in case the applicant was not assigned to a pre-
ferred school. While each program listed by the student had a different lottery number, the
same lottery number was used for the appended list of alternatives.

Table 1: Vacancies and Applicants by Geographic Unit (Cantén) and Grade

Panel A: Vacancies

Cantén Preschool1 Preschool2 Primary 1
Manta 1,830 1,394 425
Montecristi 905 668 654
Jaramijo 110 47 37
Total Grade 2,845 2,109 1,116

Total Global 6,070

Panel B: Applicants

Cantén Preschool1 Preschool2 Primary 1
Manta 1,101 1,143 338
Montecristi 481 437 124
Jaramijo6 125 125 107
Other 2 0 1
Total Grade 1,709 1,705 570

Total Global 3,984

The distribution of applicants by geographic unit and grade is presented in Panel B of table
1. Notably, at least in the case of the geographic unit of Manta (Cantén), the number of ap-
plicants in Preschool 1 and Preschool 2 is roughly equivalent. Although this poses a challenge
from a public policy standpoint in that it is desirable to enroll students earlier, it is also an inter-
esting dynamic for the application system since families” decision to postpone the enrollment of
their child(ren) puts them at a strategic disadvantage. This is because there are fewer available
seats in Preschool 2, given that currently enrolled Preschool 1 students move automatically to
the next level.

Figure 2 of Appendix A provides an overview of applicant priorities and the lengths of
ranked ordered lists.Note that most applicants declared only a single preference despite there
being no limits placed on the length of the preference list. This may be a legacy of the previous
system in which applicants did not choose a portfolio of schools and in which it was implied

0This is likely due to several factors: i) students prefer schools closer to home, and schools in more crowded
areas were filled under the previous distance-based algorithm; ii) students dissatisfied with their assigned school
can request a transfer; iii) applicants may have strategically reported addresses near preferred schools under the
prior location-based assignment system.

The preferences of applicants with siblings already enrolled at their school of interest are detailed in Panel A
of Table 14 in Appendix B. We do not have data on applicants whose siblings are enrolled in schools not listed in
their preferences.
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that applicants were largely assigned to a school based on distance (walking or driving, as
obtained from Google Maps) rather than their preferences.

A complementary explanation for the large number of short application lists is that, as
shown in Figure 3 of Appendix A, applicants surveyed after the application period indicated
high expectations of being assigned to their top choice. These responses were collected before
results were published to avoid bias. When asked why they did not add more programs to
their rank-ordered list (ROL), 56% of respondents said they lacked information on nearby al-
ternatives, 33% were confident they would be assigned to their top choice, 6% found it difficult
to find more schools, 4% preferred no assignment over adding more options, and 1% preferred
a non-public school (outside option).

In any case, the fact that the CCAS was new to families in Manta likely also resulted in
them not fully adapting their behavior to the new system and rules, meaning that they may
not have taken full advantage of the introduction of parental choice and preference reporting.
If this is the case, our findings on the welfare gains obtained with the introduction of the CCAS
system are probably downward biased when compared with the longer-term results that will
eventually be obtained once families are fully accustomed to the new system.

4 Mechanism Result and Welfare Comparison

Our analysis in this section is based on the fact that applicants’ reported preference orderings
are an accurate representation of true family preferences. This assertion is supported by the
non-strategic nature of the DA mechanism, which was furthermore emphasized in the pilot
program’s communication strategy. We thus compare the share of applicants who were as-
signed to one of their preferred options under both alternatives, and then use reported pref-
erences to estimate welfare differences. Our welfare analysis forms part of a broader body of
literature that uses structural models to study family preferences over school attributes and
school choice policy counterfactuals (e.g., Neilson (2021); Kapor et al. (2020); Abdulkadiroglu
et al. (2017); Idoux (2022)).

To estimate preferences, we adopt the utility model of Abdulkadiroglu et al. (2017) and
apply their Markov Chain Monte Carlo (MCMC) estimation method using Gibbs sampling
(Rossi et al., 1996), similar to recent applications in the school choice context (Kapor et al.,
2020; Idoux, 2022). Our methodology encounters two key challenges: a limited set of school
covariates and the assumption that applicants lack full knowledge of all available schools. To
address the first, we estimate a model without covariates, where differences in school appeal
are driven by a school-specific effect, unobservable to the econometrician but assumed to be
known to families. We also introduce a random coefficient for the distance parameter to capture
variations in how families value a school’s utility relative to distance. For the second challenge,
we work with a geographically constrained set of alternatives, assuming families are aware of
all schools within their region, though addressing the broader issue of how families form their
consideration sets is beyond the scope of this study.

We compare the distance-centric (DC) algorithm described in subsection 2.1 with the De-
ferred Acceptance (DA) algorithm, using the Stable Improvement Cycles (SIC) (Erdil & Er-
gin, 2008) and Top Trading Cycles (TTC) (Abdulkadiroglu & Soénmez, 2003) algorithms as
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benchmarks. The TTC algorithm serves as our welfare benchmark, as it delivers a student-
optimal assignment, resulting in higher welfare than SIC, which produces a stable but welfare-
constrained assignment due to the stability restriction. TTC also outperforms DA, which en-
sures stability but not student-optimality. To ensure a consistent welfare comparison, we fol-
low the approach in Abdulkadiroglu et al. (2017), first running the SIC algorithm over each DA
assignment, and then applying TTC to the resulting DA-SIC assignment.'> We conduct 100
lottery simulations for both the DA and DC algorithms to derive our welfare calculations, as in
Abdulkadiroglu et al. (2017).

With regard to the DC algorithm, one relevant point is that parents could strategically re-
port a different address, using someone else’s electricity bill (CUEN) in order to be placed at
a preferred school. To include this possibility in the analysis, we run counterfactual assign-
ments in which a random proportion of the applicants strategically choose an address close to
their most preferred program. We use different random proportions as we do not have a good
estimate of CUEN misreporting under the previous system.

To compare mechanisms, we first re-run the DA algorithm used in the pilot. We use the
same inputs, except that we do not include students with special needs in order to make the
assignment comparable to that of the DC algorithm.!® In the implemented DA, the reported
preference rankings were appended to all non-ranked programs using a linear distance sorting
criterion. Applicants received a lower priority in the distance-imputed preferences to maximize
assignment to the reported preferences.!* We define assignments to imputed preference as non-
preference assignments to distinguish them from the overall assignment obtained with the DC
algorithm.

To replicate Ecuador’s previous system (described in subsection 2.1), we consider all avail-
able programs and rank them using linear distance sorting. Students with siblings in the system
were assigned (if possible) to their sibling’s school before the main process was initiated. To
this end, we create a priority group for these students that only applies at the schools in which
their siblings are enrolled. This priority is followed by a priority for groups of siblings applying
together, as these groups were processed before individual applicants in the main process. This
priority is thus applied to all available programs. Finally, given that applicants were processed
sequentially, we run a single tie-breaking lottery to break ties.

4.1 Utility Estimation

To estimate welfare, we first need to estimate the parameters determining the utility that fam-
ilies would receive from an assignment to a particular school. To this end, equation 1 presents
our utility model.!® This approach has been increasingly adopted in the literature (Abdulka-

12In this case, SIC and TTC produce the same assignment, meaning no Pareto efficiency improvements are at-
tainable by relaxing stability constraints.

13We eliminate both students and vacancies related to special needs, which account for only 0.23% of applicants.
This decision was made because students with special needs had a special assignment round before the regular one.

4When referring to applicant preferences, we intend reported preferences without the distance-imputed prefer-
ences.

15Here, we basically adapt the model used by Abdulkadiroglu et al. (2017), estimated through Gibbs sampling
(Rossi et al., 1996). We estimate utility using the Markov-Chain Monte Carlo (MCMC), a Bayesian estimation pro-
cedure. We therefore use the same conjugate priors, specifically the Inverse-Wishart distribution. The full utility
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diroglu et al., 2017; Kapor et al., 2020; Idoux, 2022), mainly because of its relative ease of imple-
mentation in ranked-ordered data contexts.

Ujj :Sl‘]')t + 5]' + (—1 + ')/i)dij + €ij
(5]' =0+ C]‘ (1
6 =0

¥i ~N (0,04)
gj ~N (0,0%)
61',]‘ NN (0, Ue)

Here, S;; is a dummy variable equal to 1 if applicant i has a sibling in school j, d;; is the
distance between applicant i and school j, and ¢; is a school-specific preference that is unob-
servable to the econometrician but that families do observe when comparing alternatives. To
identify the parameters, we need to determine a scale normalization for the utility, which we
do by setting § = 0 as in Abdulkadiroglu et al. (2017). We also include random coefficients
over distance to school, represented by 7;, in order to consider the heterogeneity in the relative
importance of school attributes and travel distance for different applicants.'® Given that in this
utility specification, units of utility are expressed in distance units (km) — which is a result of
imposing a —1 parameter on the average dis-utility of linear distance to school — using a ran-
dom coefficient on distance is quite similar to using a random coefficient for school attributes
as in Abdulkadiroglu et al. (2017), in that doing so ends up affecting the relative importance of
distance or school attributes. As explained above, by specifying utility in this way, we change
the relative relevance of the distance to school and the school-specific unobservable.

The specification in equation 1 assumes that an applicant’s utility increases when a sibling
is already enrolled in a school. This, however, does not take into account that the reason for the
sibling being enrolled in that school may be because the family liked the school when the sib-
ling enrolled (or transferred) in the first place. This implies that ¢;; is not random for such cases,
highlighting the bias in the estimation. In Appendix B.1 we therefore present our preference
parameter estimates and welfare calculations with no sibling-related considerations. For ro-
bustness, we further present our results without including the random coefficient on distance.
Overall, the findings and conclusions remain the same across these alternate specifications.

As in Abdulkadiroglu et al. (2017), identification relies on the assumption that families re-
port their preferences truthfully and consider all the alternatives within their geographic unit.

specification, including priors, is provided in Appendix D.

16Conceptually, in each iteration of the Gibbs sampler, utilities are drawn using the estimated parameters of
the previous iteration, using reported preference rankings to restrict possible values. Specifically, assuming that i’s
ranking is of size R (1 being the most preferred alternative and R the least preferred), utilities are drawn iteratively
using a truncated normal distribution so that:

ui,j(r:l) > ui,j(r:Z) > > uirj<V:R> > ui,j(r:?)/ V# >R

To do this iterative sampling, u; j,—1) is drawn from (ui/]-(r=2>,oo) if R > 1 and using u; ,—p) from the previous
iteration, and from (—co, %) when R = 1.



Likewise, the key conditional independence assumption is that
(vir€ij) L dijlg;

which, in our case, implies that conditional on the vertical school-specific parameter, unob-
served tastes for programs are independent of linear distance to school. The previous system,
in which families could borrow or buy an electricity bill near their preferred school instead of
actually changing their residence, aligns with this conditional independence assumption.

Table 5 in Appendix B presents the estimates from equation 1, and the potential scale re-
duction factors (Gelman et al., 1992) to assess mixing and convergence of the Gibbs sampling
procedure (values close to one imply convergence). We also present the trace plots of the esti-
mated o¢ in each iteration of the Gibbs sampling in Figure 6 of Appendix A. We discarded the
initial 50,000 iterations of the Gibbs sampler as a burn period and used the following 100,000 to
compute the mean parameters and standard deviations. The trace plots show that the values
of 0. remained stable. Estimates eliminating random coefficients from equation 1 are presented
in Table 10 of Appendix B.1, and estimates of the main specification without siblings are pre-
sented in Table 11 of the same appendix section. We observe that estimated parameters are
very similar across the three alternative models, consistent with the similarity of the welfare
estimates using the different specifications.

As in Abdulkadiroglu et al. (2017), we estimate utilities conditional on the estimated pa-
rameters and, importantly, also conditional on the reported preference rankings:

E [ui,j|ri/ é’/ A/ Oe, UCI Z’yr dl]

Here, r; represents i’s reported preference ranking, and to compute i’s expected utility if as-
signed to school j we directly average over the iterations of the Gibbs sampler procedure, which
allows us to easily condition on reported preference rankings. Estimated average utilities are
measured in kilometers (km), which is a feature of using a scale normalization of —1 on the
linear distance parameter.

5 Results

In this section, we begin by describing the differences between systems in terms of assignment
to preferences and linear distance to home. We then present our welfare comparison using the
utility model introduced above.

Notably, 55.5% of applicants (n=2,206) reported preferences aligned with the ranking used
in the distance assignment mechanism, emphasizing the importance of proximity to families.
More than half chose the nearest school (or the closest with a sibling enrolled) as their first
preference. Table 2 compares a single simulation of the DA and DC algorithms. Although
the DC alternative assigned fewer applicants to their preferred school overall, the percentages
were similar for those prioritizing distance, as shown in rows 1 and 2 of Panel B. This indicates
that a coordinated system incorporating preferences does not disadvantage applicants focused
on proximity. However, the DA algorithm assigned students to schools an average of 0.29 km
farther away than the DC algorithm.
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Table 2: Mechanism Comparison - Results

DA Distance

Panel A: Applicants assigned in:
Any preference 3,118 1,986

(78.44%) (49.96%)
First preference 2,773 1,686

(69.76%) (42.42%)
Average assignment distance 1.30 km 1.01 km
Panel B: Applicants with the same 1st preference (2,206) assigned in:
Any preference 1,779 1,537

(81.16%) (70.12%)
First preference 1,644 1,472

(75.00%)  (67.15%)

Figure 4 in Appendix A shows the assignment to different declared preference rankings for
both systems. As we can see, the DA algorithm assigns more students to their first preference
than the DC algorithm (70% to 42%) and much fewer students to an alternative outside of their
reported preference list (22% vs 50%). Tables 6 to 8 in Appendix B and Figure 5 in Appendix
A display these results for the different grades. Greater congestion leads to smaller differences
between the two mechanisms in terms of applicants being assigned to their preferred options.
However, there are two forces at play. On the one hand, more congestion implies that fewer
applicants are assigned to a reported preference when using the DA alternative. On the other
hand, under the distance-based alternative, more congestion increases the probability that one
applicant who is placed in a closer school displaces another who would have ranked that school
at the top of their list (particularly in the cases where the latter applicant’s first preference and
closest school coincide).

To evaluate the effect of location misreporting, we compute counterfactual assignments in
which a random sample of applicants report the location of their most preferred school as their
address instead of their true residence. The exercise simulates cases in which families submit
another household’s electricity bill to maximize the likelihood of being assigned to their most
preferred school. We compute assignments with misreporting levels of 10%, 30%, 50%, 70%,
and 90%. These results are available at table 15 in Appendix B. The results of this exercise
show that, as the percentage of applicants who change their location increases, the percentage
of applicants assigned to one of their preferences rises as well (from 50% to 59%). Nevertheless,
the rates of assignment to a preferred option does not reach the level of the DA algorithm, since
applicants who misreport their location can only signal a preference for a single alternative.

Table 3 presents the estimated differences in mean utilities (both in km), as well as in stan-
dard deviations with respect to a student-optimal (TTC) assighment benchmark.!” In Panel A,
we can see that differences between the DA and TTC algorithms are small in terms of welfare
(less than 80 meters) at the preschool levels, and significantly smaller than the welfare loss
under the DC (distance) alternative (0.689 km and 0.430 km on average, respectively). The
difference is larger when we consider only applicants assigned to different schools under the

17SIC and TTC actually have the exact same assignment in all 100 simulations, as explained in Appendix E.
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different algorithms, as shown in Panel B.

Table 3: Differences in Welfare: Student-Optimal vs. DC and DA Algorithms

Preschool 1 Preschool 2 Primary 1
Measure DC DA DC DA DC DA
Panel A: All simulated applicants
A Mean utility (km) | -0.689 -0.003 | -0.430 -0.076 | -0.318 -0.306
AMean utility -0.699 -0.003 | -0.158 -0.028 | -0.094 -0.090

gut. FB

Panel B: Applicants with different assignments across algorithms
A Mean utility (km) | -1.486 -0.005 | -0.666 -0.118 | -0.417 -0.402

AMean utility -1.466 -0.005 | -0.263 -0.046 | -0.127 -0.121

Out. FB

A Mean utility (km) is measured computing u; j(,,) — u; j(rrc), where j(j1) represents the school to which in-

dividual i is assigned under mechanism y. We then compute average utilities for each algorithm and simulation

and finally compute the average for each algorithm across simulations. AMf,”"iutﬂity simply uses the utility variance
ut. FB

under the TTC mechanism to scale this difference in each simulation. This is done to facilitate extrapolations to
other contexts. This same table is presented in Appendix B.1 for the specification without siblings.

In Primary 1, the difference between the DA and the DC algorithms is smaller because more
applicants are assigned to a non-preferred alternative due to increased congestion, as shown
in Figure 5 of Appendix A. Moreover, in Table 9 of Appendix B, we can see that the share of
applicants assigned to the same non-preferred school in both algorithms increases significantly
in Primary 1 (56.7% of applicants assigned to the same school, compared to 2.69% and 21.35%
in Preschool 1 and 2 respectively). Furthermore, conditional on having a different assignment
in the DC and DA algorithms, the share of applicants who move from a non-preferred to a
preferred assignment under the DA algorithm is 40.85% in Primary 1, compared to 77% in
Preschool 1 and 53% in Preschool 2 (i.e., the share of applicants with improved outcomes is
smaller in later years). Finally, the DC algorithm finds on average schools that are closer to
home, which is a feature of not prioritizing reported preferences. Given that utility is on aver-
age greater for applicants with a lower home-to-school distance, this leads to a lower average
difference in utility between mechanisms.

The distribution of estimated welfare overall and in each grade is presented in Figure 7 of
Appendix A. Here, we observe that the phenomenon described in the above paragraph occurs
in all grades, with two peaks in utility in each figure: one among applicants assigned to a pre-
ferred option and another for those assigned to a non-preferred option that is close to home.
The DA and TTC (and SIC) algorithms have very similar distributions. However, the TTC algo-
rith does improve the assignment relative to the DA algorithm in Primary 1, which is explained
by the fact that, with higher congestion, stability constraints imposed by tie-breaking lotteries
are more restrictive. By eliminating them, TTC (and SIC) achieve a significant improvement
(0.318 km overall over the DA assignment and 0.417 km if restricted to applicants with differ-
ent assignments), as shown in Table 3.
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Figure 1: Welfare Differences Between Algorithms (km)
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Figure 1 compares welfare gains across different mechanisms, similar to Figure 5 in Ab-
dulkadiroglu et al. (2017). Although the magnitudes differ between our study and theirs, the
proportions are quite similar, suggesting that coordinated mechanisms incorporating applicant
preferences yield comparable results in both cases. The differences in magnitude are due to the
distinct contexts of New York and Manta, as well as the focus on secondary schools in Ab-
dulkadiroglu et al. (2017), where applicants are more willing to travel, versus preschool and
early primary in our study, where proximity is more valued.

Improvements over the DA algorithm are context-dependent, as seen in the variation across
different grades. The potential for improvement is more significant in congested grades (e.g.,
post-entry-level grades), where the margin is more relevant. A practical approach would be
to first implement a CCAS, then analyze the reported preferences to evaluate the potential of
SIC, TTC, or other algorithms. This would allow for a careful consideration of the trade-offs
between enhancing Pareto efficiency and sacrificing stability or strategy-proofness.

6 Discussion

Both developed and developing countries are increasingly adopting centralized choice and as-
signment platforms for schools Neilson (2021); World Bank (2024). While there is evidence of
the benefits from incorporating family preferences and coordinating assignment in the con-
text of New York City Abdulkadiroglu et al. (2017), there is limited evidence from developing
countries context. In this paper, we study the equilibrium welfare effects of changing the way
school seats were allocated in Manta, Ecuador. Prior to the policy change, the system assigned
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students ignoring their preferences and solely based on the linear distance between their de-
clared home and schools. We evaluate the impact of adopting a system that collects ranked
ordered lists and uses a deferred acceptance (DA) algorithm that is strategy-proof. We follow
the empirical strategy used in Abdulkadiroglu et al. (2017) for New York City and estimate
preferences to quantify the welfare effects of the policy change and compare outcomes under
different counterfactuals.

Our main result is that implementing a coordinated mechanism that incorporates appli-
cants’ preferences yields substantial welfare benefits. This finding aligns with results from
New York City even though our developing country setting is very different in many ways.

Specifically we find that the new allocation based on the DA algorithm increases the per-
centage of applicants assigned to a preferred school from 49.96% to 78.44% and first-choice
assignments from 42.42% to 69.76%, with an average increase of 0.29 km in home-to-school
distance. Welfare gains range from 0.683 km to 0.012 km, with greater gaps for applicants
assigned to different schools under each mechanism.

Our results show that coordinated school choice systems can increase efficiency and bene-
fit families in developing country context. Given the results are similar to those in developed
countries, it is likely that the benefits of these systems are generalizable across different con-
texts.
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A Figures
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Figure 2: Distribution of Declared Applicant Priorities and Ranked Ordered List Size

60

[4.]
=]

o
o

n
=]

Percentage of applicants
w
o

023
Siblings Special Needs o 1 2 3 4 5 6 7 8 9 10>
Application Length
Priorities declared by applicants Application length
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These responses were obtained in an online survey carried out after the end of the application

period but before assignment results were communicated (to avoid biasing responses).
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Figure 4: Ranking Assigned: DA and Distance Mechanism
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Figure 5: Ranking Assigned by Grade: DA and Distance Mechanism
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Figure 6: Trace Plots o, in Main Specification
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Figure 7: Welfare Distribution
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In this figure, we plot the utilities obtained with our model when using the scale normalizations 6 =0and
—1 as the average disutility from each linear km of distance between the school and the reported location of the
family. The level of utility is not relevant, as it depends on the normalization. However, the mass from the utility
distribution when using the distance-centric algorithm being shifted to the left is relevant, as it indicates how the
relative distributions of utilities compare, and lead to the average differences presented in Table 3.
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Figure 8: Figure 5 of Abdulkadiroglu et al. (2017)
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B Tables

Table 4: Comparative Statistics for Guayaquil and Manta

‘ Guayaquil | Manta
Total population 2,291,158 221,122
Population 3-5 years old (% of population 3-17 years old) 19.7 19.1
Minors in the school system (% of population 3-17 years old) 78.9 80.2
Average Mother’s Education (of minors 3-17 years old) 11.3 years | 10.8 years
Total schools 885 153
Share of public schools 54% 43%
Share of private schools 44% 54%
Share of “fiscomisional” schools 2% 3%
Total enrollment 687,046 86,455
Share of enrollment in public schools 57% 67%
Share of enrollment in private schools 40% 25%
Share of enrollment in “fiscomisional” schools 4% 8%

Table 5: Estimates and Potential Scale Reduction Factors: Main Specification

Preschool 1 Preschool 2 Primary 1

Mean Mean Mean

Estimate (SD) PSRE| (SD) PSRF | (SD) PSRF

gj 0.073 -0.918 0.048
(0.492) (0.559) (0.648)

A 3.065 1.003 | 4.732 1.007 | 3.790 1.001
(0.365) (0.562) (0.842)

o 0.291 1.001 | 1.251 1.017 | 0.540 1.004
(0.066) (0.453) (0.143)

Oe¢ 1.042 1.060 | 1.057 1.025 | 1.303 1.020
(0.048) (0.060) (0.102)

o, 1.253 1.690 1.079

Tot. schools 55 57 54

Tot. students 1,098 885 389
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Table 6: Mechanism Comparison - Results Preschool 1

DA DC

Panel A: Applicants assigned in:
Any preference 1,654 1,102

(96.95%)  (64.60%)
First preference 1,592 966

(93.32%)  (56.62%)
Average assignment distance 0.87 km 0.52 km
Panel B: Applicants with the same 1st preference (985) assigned in:
Any preference 965 955

(97.97%)  (96.95%)
First preference 942 946

(95.63%)  (96.04%)

Table 7: Mechanism Comparison - Results Preschool 2

DA DC

Panel A: Applicants assigned in:
Any preference 1,199 737

(70.45%)  (43.30%)
First preference 93.32 609

(58.52%)  (35.78%)
Average assignment distance 1.32 km 1.08 km
Panel B: Applicants with the same 1st preference (959) assigned in:
Any preference 708 607

(73.83%)  (63.30%)
First preference 618 569

(64.44%)  (59.33%)
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Table 8: Mechanism Comparison - Results Primary 1

DA DC
Panel A: Applicants assigned in:
Any preference 265 147
(46.74%)  (25.93%)
First preference 185 111
(32.63%)  (19.58%)
Average assignment distance 2.56 km 229 km

Panel B: Applicants with the same 1st preference (281) assigned in:

Any preference 144 112
(51.25%)  (39.86%)

First preference 116 103
(41.28%)  (36.65%)

Table 9: Assignment In and Out Preferences under DA and DC Algorithms

‘ Preschool 1 ‘ Preschool 2 ‘ Primary 1

Applicants assigned to same 967 801 261
schools under DA and DC (56.68%) (47.06%) (46.03%)
Applicants assigned to different 739 901 306
schools under DA and DC (43.32%) (52.94%) (53.97%)
Applicants assigned to same schools under DA and DC
Both DA and DC in preferences 941 630 113
(97.31%) (78.65%) (43.30%)
Both DA and DC out of preferences 26 171 148
(2.69%) (21.35%) (56.70%)
Applicants assigned to different schools under DA and DC
DA in preferences and DC out of preferences 569 478 125
(77.00%) (53.05%) (40.85%)
DA out of preferences and DC in preferences 17 16 7
(2.30%) (1.78%) (2.29%)
Both DA and DC in preferences 144 91 27
(19.49%) (10.10%) (8.82%)
Both DA and DC out of preferences 9 316 147
(1.22%) (35.07%) (48.04%)
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B.1 Appendix Robustness Checks

Table 10: Estimates and Potential Scale Reduction Factors. Main Specification without Random

Coefficients

Table 11: Estimates and Potential Scale Reduction Factors. Main Specification without Siblings

Preschool 1 Preschool 2 Primary 1

Mean Mean Mean

Estimate (SD) PSRF | (SD) ©PSRF | (SD) PSRF

gj 0.131 -1.480 0.075
(0.532) (0.693) (0.606)

A 3.486 1 4719 1 4.301 1
(0.396) (0.561) (0.919)

o 0.350 1.001 | 2.766 1 0.497 1
(0.082) (0.747) (0.131)

Oe¢ 1.403 1 1.314 1 1.702 1
(0.054) (0.061) (0.121)

Tot. schools 55 57 54

Tot. students 1,098 885 389

Preschool 1 Preschool 2 Primary 1
Mean Mean Mean
Estimate (SD) PSRF | (SD) ©PSRF | (SD) PSRF
éfj 0.070 -1.121 0.044
(0.500) (0.559) (0.643)
lors 0.300 1.005 | 1.661 1 0.536 1
(0.068) (0.534) (0.142)
Oe 1.089 1.025 | 0968 1.038 | 1.306 1.001
(0.062) (0.054) (0.101)
oy 1.462 1.376 0.896
Tot. schools 55 57 54
Tot. students 1,021 839 345
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Table 12: Differences in Welfare: Student-Optimal vs. DC and DA algorithms. Specification
without Random Coefficients

Preschool 1 Preschool 2 Primary 1
Measure Dist DA Dist DA Dist DA

Panel A: All simulated applicants

A Mean utility (km) | -0.773 -0.003 | -0.456 -0.071 | -0.317 -0.296
i Wiy -0.750 -0.003 | -0.177 -0.027 | -0.091 -0.085

Panel B: Applicants with different assignments across algorithms

A Mean utility (km) | -1.667 -0.006 | -0.707 -0.109 | -0.415 -0.388
i iy 1631 -0.006 | 0.302 -0.047 | -0.124 -0.116

A Mean utility (km) is measured computing u; ;) — u; j(rrc), Where j (u) represents the school to which in-

dividual i is assigned under mechanism y. We then compute average utilities for each algorithm and simulation
and finally compute the average for each algorithm across simulations. AM;“"i"nmy simply uses the utility variance
under the TTC mechanism to scale this difference in each simulation. This is done to facilitate extrapolations to
other contexts.

Table 13: Differences in welfare: Student-optimal vs DC and DA algorithms. Specification
without Siblings

Preschool 1 Preschool 2 Primary 1
Measure Dist DA Dist DA Dist DA

Panel A: All simulated applicants

A Mean utility (km) | -0.717 -0.004 | -0.348 -0.083 | -0.176 -0.361
Al W -0.756  -0.004 | -0.154 -0.037 | -0.052 -0.104

Panel B: Applicants with different assignments across algorithms

A Mean utility (km) | -1560 -0.009 | -0.543 -0.130 | -0.228 -0.470
A Wy 1442 -0.008 | -0.218 -0.052 | -0.066 -0.133

A Mean utility (km) is measured computing u; j(,,) — u; j(rc), where j(j1) represents the school to which in-
dividual i is assigned under mechanism y. We then compute average utilities for each algorithm and simulation
and finally compute the average for each algorithm across simulations. qu'zig’lﬁy simply uses the utility variance
under the TTC mechanism to scale this difference in each simulation. This is done to facilitate extrapolations to
other contexts.
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Table 14: Priorities and Assignments in DA: Potential Improvements for SIC and TTC

‘ Preschool 1 Preschool2 Primary 1
Panel A:  Ranking of schools where
an applicant has sibling priority(*)

1st preference 100 157 42
2nd preference 7 3 1
3rd preference 1 2 0

Panel B: Ranking of DA assignments for applicants
with sibling priority below 1st preference

1st preference 8 3 0
2nd preference 0 2(*%) 1(*%)
3rd preference 0 0 0

Note: None of the potential applicants that could participate in an improvement cycle (Panel B) coincide in the
programs to which they were applying, such that no cycles were attainable.
(*) Panel A shows the highest ranked program where applicants have a sibling priority. If an applicant has priority
in both the 1st and 2nd preference, they will only appear in the 1st preference in this table.
(**) One of these two applicants had sibling priority in their second preference, and the other had sibling priority in
their third preference.
(***) This applicant had sibling priority in their second preference.

Table 15: Mechanism Comparison with Location Misreporting

Applicants assigned ~ Average

to any preference Distance
Distance Mech without misreporting 1,986 (49.96%) 1.01 km
Distance Mech + 10% misreporting 2,055 (51.70%) 1.04 km
Distance Mech + 30% misreporting 2,142 (53.89%) 1.09 km
Distance Mech + 50% misreporting 2,230 (56.10%) 1.18 km
Distance Mech + 70% misreporting 2,332 (58.67%) 1.21 km
Distance Mech + 90% misreporting 2,403 (60.45%) 1.29 km
DA Algorithm 3,118 (78.44%) 1.30 km
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C Phases of the Distance-Centric Algorithm Implementation Process

The overall process started with the Preparation Phase, in which the Ministry of Education
updated all school supply information (i.e., location, available spaces, closure or opening of
educational programes, etc.).

In the second, or Registration Phase, families registered their children on a website in or-
der to be granted a spot in a public school. Legal guardians needed to indicate the type of
registration (individual or sibling group), the grade level to be attended, any older siblings al-
ready enrolled in the public school system, special educational needs, and nationality. They
also provided their electricity bill number so as to be geolocated.

This was followed by the Assignment Phase and then the Consultation Phase, during which
time families could enter the website to see their school assignments. Finally, the fifth and sixth
phases consisted of the School Change Petitions Phase and Continuous Enrollment. Applicants
could ask to change schools if there were spaces available, and they could also enroll in a given
school once the academic year had already started.
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Full Utility Specification

Ujj ZSZ']')\ + (5]' — di]' + ')’idij + €ij

5]' :g—F(:j
6 =0
A ~N(0,0))
vi ~N(0,0y)
g ~N (0, 0z)
€;j ~N (0,0¢)

We follow Rossi et al. (1996) and Abdulkadiroglu et al. (2017) in using disperse priors. The

only exception is the use of a smaller 7,, given that in this context it is reasonable to impose
a smaller prior on the mean variance of the parameter, considering that ; > 1 would imply
that a family actually prefers schools farther away from home. Specifically, we use ¢, = 100,
T, = 0+size(y;) = 1, df, = 3+size(yi) = 4% 7z = 1, dff = 2, T = 3+ Nyepoors, and

dfe =3+ Nschools-

18This implies that the mean of the ¢, prior is 0.5.
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E DA-SIC and TTC Equivalence in our Context

As shown in Table 14, there is no potential for priority trading cycles.

The Top Trading Cycles (TTC) algorithm includes the possibility of trading priorities be-
tween applicants, which happens when they prefer the alternatives in which they do not have
the priority more than ones in which they do, and are thus “willing to trade” the priority.
In other words, TTC has the potential to provide improvements over SIC, when there is not a
complete correlation between priorities and preferences. In our case, for the priority at declared
preferences (over non-preferences imputed by distance), the correlation is one since these are
always ranked higher. Thus, the only possibility for the TTC algorithm to improve over the SIC
algorithm is to find trades involving the static sibling priority. However, as shown in Table 14
(and explained in the footnote), that is not feasible.

To illustrate this, imagine a system with two schools (A and B), both with only one vacancy,
and three applicants(i, j and k). i has priority in A but prefers B over A.j has priority in school
B, but prefers A over B. k has priority in both schools, prefers A over B, and has the worst
lottery number of the system. The result of the DA and SIC assignment would be i assigned
to A and j assigned to B. The TTC algorithm would allow them to trade their priorities and
switch their assignments. With that assignment switch, applicant k is now unassigned but has
a higher priority in both schools that rejected him (higher priority pre-trade, of course). Such a
situation can only arise when the correlation between preference and priority is not one, thus
leaving room to trade the priority and get a better assignment.
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